Bipolar Junction Transistor (BJT)

- A three-terminal device that uses the voltage of the two terminals to control the current flowing in the third terminal.
 - The basis for amplifier design.
 - The basis for switch design.
 - The basic element of high speed integrated digital and analog circuits.
- Applications
 - Discrete-circuit design.
 - Analog circuits.
 * High frequency application such as radio frequency analog circuit.
 - Digital circuits.
 * High speed digital circuit such as emitter coupled circuit (ECC).
 * Bi-CMOS (Bipolar+CMOS) circuits that combines the advantages of MOSFET and bipolar transistors.
 - MOSFET: high-input impedance and low-power.
 - Bipolar transistors: high-frequency-operation and high-current-driving capabilities.
- Circuit symbol
 - The arrowhead on the emitter implies the polarity of the emitter-base voltage.
 * NPN: $v_{BE} > 0$.
 * PNP: $v_{EB} > 0$.

7.1 Structure

7.1.1 NPN Transistor

- Figure 7.2 depicts a simplified NPN transistor.
 - Emitter (E): heavily doped n-type region.
 - Base (B): lightly doped p-type region.
 - Collector (C): heavily doped n-type region.
 - Two diodes connected in series with opposite directions.
 * EBJ: Emitter-Base junction.
Sec 7.1. Structure

Figure 7.1: Circuit symbols of (a) NPN and (b) PNP transistors.

Figure 7.2: A simplified structure of the NPN transistor.

* CBJ: Collector-Base junction.

- Figure 7.3 shows the cross-section view of an NPN transistor.
 - The NPN transistor has asymmetrical structure.
 - α and β parameters are different for forward active and reverse active modes.
- Modes of operations
 - Cutoff
 * EBJ (Reverse), CBJ (Reverse)
 * $v_{BE} < 0$, $v_{CB} > 0$.
 - Active (refer to Figure 7.7)
 * EBJ (Forward), CBJ (Reverse)
 * $v_{BE} > 0$, $v_{CB} > 0$.
 - Reverse Active
 * EBJ (Reverse), CBJ (Forward)
 * $v_{BE} < 0$, $v_{CB} < 0$.
 - Saturation
 * EBJ (Forward), CBJ (Forward)
 * $v_{BE} < 0$, $v_{CB} < 0$.

96
Lecture 7. Bipolar Junction Transistor (BJT)

Figure 7.3: Cross-section of an NPN BJT.

- Figure 7.4 shows the voltage polarities and current flow in the NPN transistor biased in the active mode.

Figure 7.4: Voltage polarities and current flow in the NPN transistor biased in the active mode.

7.1.2 PNP Transistor

Figure 7.5: A simplified structure of the PNP transistor.

- Figure 7.5 depicts a simplified PNP transistor.
 - Emitter (E): heavily doped p-type region.
Sec 7.2. Operations of NPN Transistor

- Base (B): lightly doped n-type region.
- Collector (C): heavily doped p-type region.
- Two diodes connected in series with opposite directions.
 * EBJ: Emitter-Base junction.
 * CBJ: Collector-Base junction.

• Modes of operations
 - Cutoff
 * EBJ (Reverse), CBJ (Reverse)
 * $v_{EB} < 0$, $v_{BC} < 0$.
 - Active (refer to Figure 7.7)
 * EBJ (Forward), CBJ (Reverse)
 * $v_{EB} > 0$, $v_{BC} > 0$.
 - Reverse Active
 * EBJ (Reverse), CBJ (Forward)
 * $v_{EB} < 0$, $v_{BC} < 0$.
 - Saturation
 * EBJ (Forward), CBJ (Forward)
 * $v_{EB} > 0$, $v_{CB} > 0$.

• Figure 7.6 shows the voltage polarities and current flow in the PNP transistor biased in the active mode.

![Figure 7.6](image)

Figure 7.6: Voltage polarities and current flow in the PNP transistor biased in the active mode.

7.2 Operations of NPN Transistor

7.2.1 Active Mode

• Emitter-Base Junction
Figure 7.7: Current flow in an NPN transistor to operate in the active mode.

- Forward bias, \(v_{BE} > 0 \).
- Electrons in the emitter region are injected into the base causing a current \(i_{E1} \).
- Holes in the base region are injected into the emitter region causing a current \(i_{E2} \).
 - Generally, \(i_{E1} >> i_{E2} \).
 - \(i_E(t) = i_{E1} + i_{E2} \) \hspace{1cm} (7.1)

- Base region
 - Figure 7.8 depicts the concentration of minority carriers (electrons) in the base region.
 - Tapered concentration causes the electrons to diffuse through the base region toward the collector.
 - Some of the electrons may combine with the holes causing a concave shape of the profile.
 - The recombination process is quite small due to lightly doped and thin base region.
 - \(n_p(0) = n_p0e^{v_{BE}/V_T} \) \hspace{1cm} (7.2)
 - Diffusion current \(I_n \) (flowing from right to the left) is proportional to the slope of the concentration profile.
 - \(A_E \) is the cross-sectional area of the base-emitter junction.
 - \(D_n \) is the electron diffusivity in the base region.
 - \(W \) is the effective width of the base.
 - \(I_n = A_EqD_n \frac{dn_p(x)}{dx} = -A_EqD_n \frac{n_p(0)}{W} \) \hspace{1cm} (7.3)
Sec 7.2. Operations of NPN Transistor

- Collector-Base Junction
 - Reverse bias, \(v_{BC} > 0 \).
 - The electrons near the collector side are swept into the collector region causing zero concentration at the collector side.

- Collector current, \(i_C \).
 - Most of the diffusing electrons will reach the collector region, i.e., \(i_C = -I_n \).
 * Only a very small percentage of electrons are recombined with the holes in the base region.
 - As long as \(v_{CB} > 0 \), \(i_C \) is independent of \(v_{CB} \).
 * The electrons that reach the collector side of the base region will be swept into the collector as collector current.

\[
i_C = -I_n = A_E q D_n n_p(0) \frac{1}{W} = A_E q D_n n_{p0} e^{v_{BE}/V_T} = \frac{A_E q D_n n_p^2}{W N_A} e^{v_{BE}/V_T} = I_S e^{v_{BE}/V_T}
\]

- Saturation current (also known as scale current) \(I_S = (A_E q D_n n_p^2) / (W N_A) \)
 * A strong function of temperature.
 * Proportional to the cross-sectional area of the base-emitter junction.
 * Inverse proportional to the base width \(W \).

- Base current \(i_B \)
- i_B is composed of two currents.
 * The holes injected from the base region into the emitter region.

 $i_{B1} = \frac{AEqD_n n_i^2}{N_D L_p} e^{v_{BE}/V_T}$ \hspace{1cm} (7.5)

 * The holes that have to be supplied by the external circuit due to the recombination.

 τ_b is the average time for a minority electron to recombine with a majority hole.

 $i_{B2} = \frac{1}{2} \frac{AEqW n_i^2}{\tau_b N_A} e^{v_{BE}/V_T}$ \hspace{1cm} (7.6)

- Formulation of i_B in terms of i_C.
 * I_s is the saturation current of i_C (refer to Eq.(7.4))
 * $\beta = 1/ \left(\frac{D_p}{D_n} \frac{N_A W}{N_D L_p} + \frac{1}{2} \frac{W^2}{D_n \tau_b} \right)$ is a constant (normally in the range $50 \sim 200$) for a given transistor.
 * β is mainly influenced by (1) the width of the base region, and (2) the relative dopings of the base region and the emitter region $\frac{N_A}{N_D}$.

 - To achieve high β values, the base should be thin (W small) and lightly doped, and the emitter heavily doped.

\[
\begin{align*}
 i_B &= i_{B1} + i_{B2} \\
 &= I_s \left(\frac{D_p}{D_n} \frac{N_A W}{N_D L_p} + \frac{1}{2} \frac{W^2}{D_n \tau_b} \right) e^{v_{BE}/V_T} \\
 &= \left(\frac{D_p}{D_n} \frac{N_A W}{N_D L_p} + \frac{1}{2} \frac{W^2}{D_n \tau_b} \right) i_C \\
 &= \frac{1}{\beta} \times i_C \\
\end{align*}
\] \hspace{1cm} (7.7)

- Emitter current i_E
 - From KCL, the i_E and i_C can be related as follows:

\[
\begin{align*}
 i_E &= i_B + i_C \\
 &= \frac{1}{\beta} i_C + i_C \\
 &= \frac{1 + \beta}{\beta} \times i_C \\
 &= \frac{1}{\alpha} \times i_C \\
 &= \frac{1}{\alpha} \times I_s e^{v_{BE}/V_T} \\
\end{align*}
\] \hspace{1cm} (7.8)

* $\alpha = \beta / (1 + \beta) \simeq 1$ is a constant for a given transistor.
Sec 7.2. Operations of NPN Transistor

* Small change in α corresponds to large changes in β.

** Recapitulation
- Configuration
 * EBJ (Forward), CBJ (Reverse)
- Relationship between i_C, i_B, and i_E.
 * $i_C = \beta \times i_B$.
 * β (normally in the range 50~200) is a constant for a given transistor.
 * $i_C = \alpha \times i_E$.
 * $\alpha (\beta / (1 + \beta) \lesssim 1)$ is a constant for a given transistor.
- i_B, i_C, and i_E are all controlled by v_{BE}.

$$
\begin{align*}
 i_C &= I_S e^{v_{BE} / V_T} \\
 i_B &= \frac{1}{\beta} I_S e^{v_{BE} / V_T} \\
 i_E &= \frac{1}{\alpha} I_S e^{v_{BE} / V_T}
\end{align*}
$$

- Figure 7.9 depicts the large signal equivalent model of the NPN transistor.
 * In Figure 7.9 (a), i_C behaves as a voltage (v_{BE}) controlled current source.
 $$i_C + i_B = i_E = \frac{1}{\alpha} i_C$$
 * In Figure 7.9 (b), i_C behaves as a current (i_E) controlled current source.
 $$i_C + i_B = i_E$$
 $$\Rightarrow \alpha i_E + i_B = i_E$$

* The diode D_E represents the forward base-emitter junction.

7.2.2 Reverse Active Mode
- The α and β in the reverse active mode are much lower than those in the forward active mode.
 - α_R is in the range of 0.01 to 0.5.
 * In forward active mode, the collector virtually surrounds the emitter region.
 - Electrons injected into the thin base region are mostly captured by the collector.
 * In reverse active mode, the emitter virtually surrounds the collector region.
 - Electrons injected into the thin base region are partly captured by the collector.
7.2.3 Ebers-Moll (EM) Model

- A composite model that can be used to predict the operations of the BJT in all possible modes.
 - Combine Figure 7.9 (b) and Figure 7.10.
- α and β
Sec 7.2. Operations of NPN Transistor

Figure 7.11: Ebers-Moll model of the NPN transistor.

- α_F and β_F denotes the parameters in forward active mode.
- α_R and β_R denotes the parameters in reverse active mode.

Equivalent saturation current I_{SE} and I_{SC}

- From Figure 7.9 (b) and Figure 7.10, I_{SE} and I_{SC} are the equivalent saturation currents at the EBJ and CBJ, respectively.

\[
I_{SE} = \frac{1}{\alpha_F} I_S \\
I_{SC} = \frac{1}{\alpha_R} I_S \\
\Rightarrow \alpha_F I_{SE} = \alpha_R I_{SC} = I_S
\]

(7.12)

i_C, i_B, and i_E in the EM model

\[
i_E = i_{DE} - \alpha_R i_{DC} \\
i_C = -i_{DC} + \alpha_F i_{DE} \\
i_B = (1 - \alpha_F) i_{DE} + (1 - \alpha_R) i_{DC}
\]

(7.13)

- $i_{DE} = I_{SE} \left(e^{v_{BE}/V_T} - 1\right)$.
- $i_{DC} = I_{SC} \left(e^{v_{BC}/V_T} - 1\right)$.

104
• By Eq. (7.12),

\[
\begin{align*}
 i_E &= \frac{I_S}{\alpha_F} \left(e^{v_{BE}/V_T} - 1 \right) - I_S \left(e^{v_{BC}/V_T} - 1 \right) \\
 i_C &= I_S \left(e^{v_{BE}/V_T} - 1 \right) - \frac{I_S}{\alpha_R} \left(e^{v_{BC}/V_T} - 1 \right) \\
 i_B &= \frac{I_S}{\beta_F} \left(e^{v_{BE}/V_T} - 1 \right) + \frac{I_S}{\beta_R} \left(e^{v_{BC}/V_T} - 1 \right)
\end{align*}
\]

(7.14)

- \(\beta_F = \alpha_F / (1 - \alpha_F) \).
- \(\beta_R = \alpha_R / (1 - \alpha_R) \).

7.2.4 Saturation Mode

• CBJ is in forward bias, i.e., \(v_{BC} > 0.4V \).
 - CBJ has larger junction area than EBJ.
 * CBJ has larger saturation current \(I_S \) and lower cut-in voltage than EBJ.
 * In forward bias,
 * The voltage drop across CBJ is 0.4V.
 * The voltage drop across EBJ is 0.7V.
 - As \(v_{BC} \) is increased, \(i_C \) will be decreased and eventually reach zero.

\[
i_C \simeq I_S e^{v_{BE}/V_T} - \frac{I_S}{\alpha_R} e^{v_{BC}/V_T}
\]

(7.15)

Figure 7.12: Concentration profile of the minority carriers in the base region of an NPN transistor.
Figure 7.13: Current flow in a PNP transistor biased to operate in the active mode.

7.3 Operations of PNP Transistor

7.3.1 Active Mode

- Current in a PNP transistor is mainly conducted by holes.
- Emitter-Base Junction
 - Forward bias, $v_{EB} > 0$.
 - Holes in the emitter region are injected into the base causing a current i_{E1}.
 - Electrons in the base region are injected into the emitter region causing a current i_{E2}.
 - Generally, $i_{E1} \gg i_{E2}$.

$$i_E(t) = i_{E1} + i_{E2} \quad (7.16)$$

- Base region
 - Tapered concentration causes the holes to diffuse through the base region toward the collector.
 - Some of the holes may combine with the electrons.
 - The recombination process is quite small due to lightly doped and thin base region.
- Collector-Base Junction
 - Reverse bias, $v_{BC} > 0$.
 - The holes near the collector side are swept into the collector region causing zero concentration at the collector side.
- Collector current, i_C.
 - Most of the diffusing holes will reach collector region.
 - Only a very small percentage of holes are recombined with the electrons
in the base region.

- As long as $v_{BC} > 0$, i_C is independent of v_{BC}.
 * The holes that reach the collector side of the base region will be swept into
 the collector as collector current.

- Base current i_B
 - i_B is composed of two currents.
 * The electrons injected from the base region into the emitter region.
 * The electrons that have to be supplied by the external circuit due to the
 recombination.

- Emitter current i_E
 - From KCL, the i_E and i_C can be related as follows:

$$i_E = i_B + i_C$$
$$= \frac{1}{\beta}i_C + i_C$$
$$= \frac{1 + \beta}{\beta} \times i_C$$
$$= \frac{1}{\alpha} \times i_C$$
$$= \frac{1}{\alpha} \times I_S e^{v_{EB}/V_T}$$

 * $\alpha = \beta / (1 + \beta) \simeq 1$ is a constant for a given transistor.
 * Small change in α corresponds to large changes in β.

- Figure 7.14 depicts the large signal equivalent model of the PNP transistor.
7.3.2 Reverse Active Mode

- Similar to NPN transistor.

7.3.3 Saturation Mode

- Similar to NPN transistor.

7.3.4 Summary of the i_C, i_B, i_E Relationships in Active Mode

- NPN transistor

\[
\begin{align*}
 i_C &= I_s e^{v_{BE}/V_T} \\
 i_B &= \frac{I_s}{\beta} e^{v_{BE}/V_T} \\
 i_E &= \frac{I_s}{\alpha} e^{v_{BE}/V_T}
\end{align*}
\]
Figure 7.16: The $i_C - v_{CB}$ characteristics of an NPN transistor.

$$
\begin{align*}
 i_C &= \alpha i_E \\
 i_C &= \beta i_B \\
 i_B &= (1 - \alpha)i_E = \frac{i_E}{1 + \beta} \\
 i_E &= (1 + \beta)i_B
\end{align*}
$$

- PNP transistor.
 - The v_{BE} in Eq. (7.18) is replaced by v_{EB}.

7.4 The $i - v$ Characteristics of NPN Transistor

7.4.1 Common Base ($i_C - v_{CB}$)

- Figure 7.16 depicts the i_C versus v_{CB} for various i_E, which is also known as the common-base characteristics.
 - Input port: emitter and base terminals.
 - Input current i_E.
 - Output port: collector and base terminals.
 - Output current i_C.
 - The base terminal serves as a common terminal to both input port and output port.
- Active Region ($v_{CB} \geq -0.4V$)
 - i_C depends slightly on v_{CB} and shows a small positive slope.
Sec 7.4. The $i - v$ Characteristics of NPN Transistor

- i_C shows a rapid increase, known as breakdown phenomenon, for a relatively large value of v_{CB}.
- Each $i_C - v_{CB}$ curve intersects the vertical axis at a current level equal to αI_E.
 * Total or large-signal α (common-base current gain)
 \[\alpha = \frac{i_C}{i_E}, \text{ where } i_C \text{ and } i_E \text{ denote the total collector and emitter currents, respectively.} \]
 * Incremental or small-signal α
 \[\alpha = \frac{\Delta i_C}{\Delta i_E}. \]
 * Usually, the values of incremental and total α differ slightly.

- Saturation Region ($v_{CB} < -0.4V$)
 - CBJ is forward biased.
 - The EM model can be used to determine the v_{CB} at which i_C is zero.

7.4.2 Common Emitter ($i_C - v_{CE}$)

- Figure 7.17 depicts the i_C versus v_{CE} for various v_{BE}, which is also known as the common-emitter characteristics.
 - Input port: base and emitter terminals.
 * Input current i_B.
 - Output port: collector and emitter terminals.
 * Output current i_C.
 - The emitter terminal serves as a common terminal to both input port and output port.

- Active Region ($v_{CB} \geq -0.4V$)
 - i_C increases as the v_{CE} is increased, which is known as Early Effect.
 * At a given v_{BE}, increasing v_{CE} increases the width of the depletion region of the CBJ.
 * The effective base width W is decreased.
 * As shown in Eq. (7.4), I_S is inversely proportional to the base width W.
 - When extrapolated, the characteristics line meet at point on the negative v_{CE} (normally in the range of 50V to 100V), $-V_A$.
 * V_A is a constant for a given transistor.

- Large signal equivalent circuit model in active mode.
 - The linear dependency of i_C on v_{CE} can be formulated as follows:
 \[i_C = I_S e^{v_{BE}/V_A} (1 + \frac{v_{CE}}{V_A}) = I_C (1 + \frac{v_{CE}}{V_A}) \quad (7.20) \]
 - The output resistance looking into the collector-emitter terminals.
 * Inversely proportional to the collector current I_C without considering Early effect.
Figure 7.17: The $i_C - v_{CE}$ characteristics of the BJT.

* Controlled by v_{BE}.

$$\Delta i_C = I_S e^{v_{BE}/V_T} \left(\frac{\Delta v_{CE}}{V_A} \right)$$ \hspace{1cm} (7.21)

$$\Rightarrow r_o = \frac{\Delta v_{CE}}{\Delta i_C} = \frac{V_A}{I_C}$$

Figure 7.18 depicts the large signal equivalent circuit model of an NPN BJT in the active mode and with the common emitter configuration.

* Figure 7.18 (a), voltage v_{BE} controls the collector current source.

* Figure 7.18 (b), the base current i_B controls the collector current source $\beta \times i_B$.

- Large signal or DC β

 * The ratio of total current in the collector to the total current in the base, which represents the ideal current gain (where r_o is not present) of the common-emitter configuration.

$$\beta_{dc} = \frac{i_C}{i_B} \bigg|_{v_{CE}=\text{constant}}$$ \hspace{1cm} (7.22)

 * β is also known as the common-emitter current gain.

- Incremental or AC β

 * Short-circuit common-emitter current gain.

 * AC β and DC β differ approximately 10% to 20%.

$$\beta_{ac} = \frac{\Delta i_C}{\Delta i_B} \bigg|_{v_{CE}=\text{constant}}$$ \hspace{1cm} (7.23)
Sec 7.4. The $i - v$ Characteristics of NPN Transistor

Figure 7.18: Large signal equivalent circuit model of an NPN BJT operating in the active mode and with common-emitter configuration.

Figure 7.19: An expanded view of the common-emitter characteristic in the saturation region.

- Saturation Region ($v_{CB} < -0.4V$)
 - Figure 7.19 depicts an expanded view of the common-emitter characteristic in the saturation region.
 - Analytical expressions of $i_C - v_{CE}$ using EM model.
 * $v_{BE} = v_{CE} + v_{CB}$.

\[
\begin{align*}
 i_C & \simeq I_S (e^{v_{BE}/V_T}) - \frac{I_S}{\alpha_R} (e^{v_{BC}/V_T}) \\
 I_B & \simeq \frac{I_S}{\beta_F} (e^{v_{BE}/V_T}) + \frac{I_S}{\beta_R} (e^{v_{BC}/V_T}) \\
 i_C & \simeq (\beta_F I_B) \left(\frac{e^{v_{CE}/V_T} - \frac{1}{\alpha_R}}{e^{v_{CE}/V_T} - \frac{2}{\beta_F \beta_R}} \right)
\end{align*}
\]
Lecture 7. Bipolar Junction Transistor (BJT)

Figure 7.20: Plot of normalized i_C versus v_{CE} for an NPN transistor with $\beta_F = 100$ and $\alpha_R = 0.1$.

- Large signal equivalent circuit model in saturation mode.
 - The saturation transistor exhibits a low collector-to-emitter resistance R_{CEsat}.

 $$R_{CEsat} = \left. \frac{\partial v_{CE}}{\partial i_C} \right|_{i_B=i_B,i_C=I_C} \approx \frac{1}{10\beta_F I_B} \quad (7.26)$$

 - At the collector side, the transistor is modeled as a resistance R_{CEsat} in series with a battery v_{CEoff} as shown in Figure 7.21 (c).
 * V_{CEoff} is typically around 0.1V.
 * V_{CEsat} is typically around 0.1 \sim 0.3V.

 $$V_{CEsat} = V_{CEoff} + I_{Csat} R_{CEsat} \quad (7.27)$$

 - For many applications, the even simpler model shown in Figure 7.21 is used.
Sec 7.4. The $i - v$ Characteristics of NPN Transistor

Figure 7.21: Equivalent circuit representation of the saturated transistor.